I use this blog as a dumping ground for various scripts as well as solutions to Maths problems.
Labels
- Alter (2)
- Analytic functions (2)
- AQ (2)
- AWR (4)
- Collections (2)
- Connect By (2)
- Constraints (7)
- Date/Time calculations (3)
- Dynamic SQL (4)
- Explain Plan (1)
- Formatting (3)
- Functions (1)
- Generating Functions (1)
- Indexes (7)
- Insert (3)
- JMS (3)
- Joins (4)
- LOB (3)
- locking (5)
- Partitions (3)
- Performance (10)
- Security (1)
- SQL Plus (3)
- Tabibitosan (1)
- Triggers (1)
- Views (1)
- XML (4)
Script categories
- Performance (10)
- Constraints (7)
- Indexes (7)
- locking (5)
- AWR (4)
- Dynamic SQL (4)
- Joins (4)
- XML (4)
- Date/Time calculations (3)
- Formatting (3)
- Insert (3)
- JMS (3)
- LOB (3)
- Partitions (3)
- SQL Plus (3)
- AQ (2)
- Analytic functions (2)
- Collections (2)
- Connect By (2)
- Explain Plan (1)
- Functions (1)
- Security (1)
- Triggers (1)
- Views (1)
Sunday, 14 March 2021
Generating Function - Methods for obtaining characteristic roots for determining explicit solution
The Question is:
Answer for a)
$\begin{align*}
f(x)&= & a_0 & + & a_1x & + & a_2x^2 & + & a_3x^3 & + &\cdots \\
-xf(x)&= & & - & a_0x & - & a_1x^2 & -& a_2x^3 & - &\cdots \\
-5x^2f(x)&= & & & & - & 5a_0x^2 & - & 5a_1x^3 & - &\cdots \\
-3x^3f(x)&= & & & & & & - & 3a_0x^3 & - &\cdots \\
\hline \\
\end{align*}
\\
f(x)[1-x-5x^2-3x^3]=a_0+x(a_1-a_0)+x^2(a_2-a_1-a_0)+0+\cdots
\\
f(x)=\frac{a_0+x(a_1-a_0)+x^2(a_2-a_1-5a_0)}{1-x-5x^2-3x^3}
\\$
Answer for b). The technique used is based on this video by Mayur Gohil
$\text{ let }a_n=a^n, \text{ then }a^n=a^{n-1}+5a^{n-2}+3a^{n-3} \Rightarrow \frac{a^n}{a^{n-3}}=\frac{a^{n-1}}{a^{n-3}}+\frac{5a^{n-2}}{a^{n-3}}+\frac{3a^{n-3}}{a^{n-3}} \Rightarrow\\
\text{ characteristic polynomial is } a^3-a^2-5a-3=0 \text{ and the characteristic roots are } a=-1 \text { with multiplicity 2 and } a=3 \\ $
$\text{ when }n=0,a_0=1 \Rightarrow 1=A_1(3)^0+(A_2+A_3(0))(-1)^0 \Rightarrow 1=A_1+A_2 \\
\text{ when }n=1,a_1=1 \Rightarrow 1=A_1(3)^1+(A_2+A_3(1))(-1)^1 \Rightarrow 1=3A_1-A_2-A_3 \\
\text{ when }n=2,a_2=6 \Rightarrow 1=A_1(3)^2+(A_2+A_3(2))(-1)^2 \Rightarrow 6=9A_1+A_2+2A_3 \\
$
$
\text{ create an augmented matrix for the system to solve for } A_1,A_2,A_3 \text { using Gaussian elimination } \\
\left(\begin{array}{@{}ccc|c@{}}
1 & 1 & 0 & 1 \\
3 & -1 & -1 & 1 \\
9 & 1 & 2 & 6
\end{array}\right) \longrightarrow \left(\begin{array}{@{}ccc|c@{}}
1 & 0 & 0 & 9/16 \\
0 & 1 & 0 & 7/16 \\
0 & 0 & 1 & 1/4
\end{array}\right) \\
$
$\text{ Explicit solution for } A_1=\frac{9}{16},A_2=\frac{7}{16},A_3=\frac{1}{4} \Rightarrow a_n=\frac{9}{16}(3^n)+\bigl(\frac{7}{16}+\frac{1}{4}(n)\bigr)(-1)^n \Rightarrow \frac{9}{16}3^n+\frac{7}{16}(-1)^n +\frac{1}{4}n(-1)^n \\ \\ $
Answer given in notebook:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment